Rahmenprogramm des BMBF zur Förderung der empirischen Bildungsforschung

Literaturdatenbank

Vollanzeige

    Pfeil auf den Link... Verfügbarkeit 
Autoren Helske, Satu; Helske, Jouni; Eerola, Mervi  
Titel Analysing complex life sequence data with hidden Markov modelling.  
URL https://lacosa.lives-nccr.ch/sites/lacosa.lives-nccr.ch/files/proc-lacosa2-helskehelskeeerola_paper_24.pdf  
Erscheinungsjahr 2016  
Sammelwerk Ritschard, Gilbert (Hrsg.); Studer, Matthias (Hrsg.): Proceedings of the international conference on sequence analysis and related methods (LaCOSA II). .  
Seitenzahl S. 209-240  
Verlag Lausanne, CH:  
Dokumenttyp Sammelwerksbeitrag; online  
Beigaben Literaturangaben, Abbildungen, Tabellen, Anhang  
Sprache englisch  
Forschungsschwerpunkt Bildungspanel (NEPS)  
Schlagwörter Daten; Sequenz; Datenanalyse; Clusteranalyse  
Abstract When analysing complex sequence data with multiple channels (dimensions) and long observation sequences, describing and visualizing the data can be a challenge. Hidden Markov models (HMMs) and their mixtures (MHMMs) offer a probabilistic model-based framework where the information in such data can be compressed into hidden states (general life stages) and clusters (general patterns in life courses). We studied two different approaches to analysing clustered life sequence data with sequence analysis (SA) and hidden Markov modelling. In the first approach we used SA clusters as fixed and estimated HMMs separately for each group. In the second approach we treated SA clusters as suggestive and used them as a starting point for the estimation of MHMMs. Even though the MHMM approach has advantages, we found it to be unfeasible in this type of complex setting. Instead, using separate HMMs for SA clusters was useful for finding and describing patterns in life courses. (Orig.).  
Förderkennzeichen 01GJ0888